2

TeLEx: learning signal temporal logic from positive examples using tightness metric

We propose a novel passive learning approach, TeLex, to infer signal temporal logic (STL) formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. First, we present a template-driven learning approach that requires two inputs- a set of observed traces and a template STL formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable the use of gradient-based numerical optimization engines and it produces a 30x to 100x speed-up with respect to the state-of-art gradient-free optimization. Second, we present a novel technique for automatically learning the structure of the STL formula by incrementally constructing more complex formula guided by the robustness metric of subformula. We demonstrate the effectiveness of the overall approach for learning STL formulas from only positive examples on a set of synthetic and real-world benchmarks.

Explaining AI Decisions Using Efficient Methods for Learning Sparse Boolean Formulae

In this paper, we consider the problem of learning Boolean formulae from examples obtained by actively querying an oracle that can label these examples as either positive or negative. This problem has received attention in both machine learning as well as formal methods communities, and it has been shown to have exponential worst-case complexity in the general case as well as for many restrictions. In this paper, we focus on learning sparse Boolean formulae which depend on only a small (but unknown) subset of the overall vocabulary of atomic propositions. We propose two algorithms—first, based on binary search in the Hamming space, and the second, based on random walk on the Boolean hypercube, to learn these sparse Boolean formulae with a given confidence. This assumption of sparsity is motivated by the problem of mining explanations for decisions made by artificially intelligent (AI) algorithms, where the explanation of individual decisions may depend on a small but unknown subset of all the inputs to the algorithm. We demonstrate the use of these algorithms in automatically generating explanations of these decisions. These explanations will make intelligent systems more understandable and accountable to human users, facilitate easier audits and provide diagnostic information in the case of failure. The proposed approach treats the AI algorithm as a black-box oracle; hence, it is broadly applicable and agnostic to the specific AI algorithm. We show that the number of examples needed for both proposed algorithms only grows logarithmically with the size of the vocabulary of atomic propositions. We illustrate the practical effectiveness of our approach on a diverse set of case studies.

Safe autonomy under perception uncertainty using chance-constrained temporal logic

We propose a novel passive learning approach, TeLex, to infer signal temporal logic (STL) formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. First, we present a template-driven learning approach that requires two inputs- a set of observed traces and a template STL formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable the use of gradient-based numerical optimization engines and it produces a 30x to 100x speed-up with respect to the state-of-art gradient-free optimization. Second, we present a novel technique for automatically learning the structure of the STL formula by incrementally constructing more complex formula guided by the robustness metric of subformula. We demonstrate the effectiveness of the overall approach for learning STL formulas from only positive examples on a set of synthetic and real-world benchmarks.