Control

A risk-sensitive finite-time reachability approach for safety of stochastic dynamic systems

A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set asa set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk(CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set and provide arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).

Learning and Verification of Feedback Control Systems using Feedforward Neural Networks

We present an approach to learn and formally verify feedback laws for data-driven models of neural networks. Neural networks are emerging as powerful and general data-driven representations for functions. This has led to their increased use in data-driven plant models and the representation of feedback laws in control systems. However, it is hard to formally verify properties of such feedback control systems. The proposed learning approach uses a receding horizon formulation that samples from the initial states and disturbances to enforce properties such as reachability, safety and stability. Next, our verification approach uses an over-approximate reachability analysis over the system, supported by range analysis for feedforward neural networks. We report promising results obtained by applying our techniques on several challenging nonlinear dynamical systems.