Principal Manifold Flows

Abstract

Normalizing flows map an independent set of latent variables to their samples using a bijective transformation. Despite the exact correspondence between samples and latent variables, their high level relationship is not well understood. In this paper we characterize the geometric structure of flows using principal manifolds and understand the relationship between latent variables and samples using contours. We introduce a novel class of normalizing flows, called principal component flows (PCF), whose contours are its principal manifolds, and a variant for injective flows (iPCF) that is more efficient to train than regular injective flows. PCFs can be constructed using any flow architecture, are trained with a regularized maximum likelihood objective and can perform density estimation on all of their principal manifolds. In our experiments we show that PCFs and iPCFs are able to learn the principal manifolds over a variation of datasets. Additionally, we show that PCFs can perform density estimation on data that lie on a manifold with variable dimensionality, which is not possible with existing normalizing flows.

Publication
In 39th International Conference on Machine Learning (ICML), 2022
Adam Cobb
Adam Cobb
Senior Computer Scientist

My research interests include Bayesian inference, Bayesian deep learning, Gaussian processes, and quantum machine learning.

Susmit Jha
Susmit Jha
Technical Director, NuSCI

My research interests include artificial intelligence, formal methods, machine learning and dynamical systems.

Related