Model-Centered Assurance for Autonomous Systems

Abstract

The functions of an autonomous system can generally be partitioned into those concerned with perception and those concerned with action. Perception builds and maintains an internal model of the world (i.e., the system’s environment) that is used to plan and execute actions to accomplish a goal established by human supervisors. Accordingly, assurance decomposes into two parts- a) ensuring that the model is an accurate representation of the world as it changes through time and b) ensuring that the actions are safe (and effective), given the model. Both perception and action may employ AI, including machine learning (ML), and these present challenges to assurance. However, it is usually feasible to guard the actions with traditionally engineered and assured monitors, and thereby ensure safety, given the model. Thus, the model becomes the central focus for assurance. We propose an architecture and methods to ensure the accuracy of models derived from sensors whose interpretation uses AI and ML. Rather than derive the model from sensors bottom-up, we reverse the process and use the model to predict sensor interpretation. Small prediction errors indicate the world is evolving as expected and the model is updated accordingly. Large prediction errors indicate surprise, which may be due to errors in sensing or interpretation, or unexpected changes in the world (e.g., a pedestrian steps into the road). The former initiate error masking or recovery, while the latter requires revision to the model. Higher-level AI functions assist in diagnosis and execution of these tasks. Although this two-level architecture where the lower level does “predictive processing” and the upper performs more reflective tasks, both focused on maintenance of a world model, is derived by engineering considerations, it also matches a widely accepted theory of human cognition.

Publication
In 39th International Conference on Computer Safety, Reliability and Security (SafeComp), 2020
Susmit Jha
Susmit Jha
Technical Director, NuSCI

My research interests include artificial intelligence, formal methods, machine learning and dynamical systems.

Related