Detecting OODs as datapoints with high uncertainty

Abstract

Deep neural networks (DNNs) are known to produce incorrect predictions with very high confidence on out-of-distribution inputs (OODs). This limitation is one of the key challenges in the adoption of DNNs in high-assurance systems such as autonomous driving, air traffic management, and medical diagnosis. This challenge has received significant attention recently, and several techniques have been developed to detect inputs where the model’s prediction cannot be trusted. These techniques detect OODs as datapoints with either high epistemic uncertainty or high aleatoric uncertainty. We demonstrate the difference in the detection ability of these techniques and propose an ensemble approach for detection of OODs as datapoints with high uncertainty (epistemic or aleatoric). We perform experiments on vision datasets with multiple DNN architectures, achieving state-of-the-art results in most cases.

Publication
In Uncertainty & Robustness in Deep Learning Workshop @ ICML 2021
Ramneet Kaur
Ramneet Kaur
Advanced Computer Scientist
Susmit Jha
Susmit Jha
Technical Director, NuSCI

My research interests include artificial intelligence, formal methods, machine learning and dynamical systems.

Anirban Roy
Anirban Roy
Senior Computer Scientist

Anirban Roy is a Senior Computer Scientist at SRI International. His current interests include Generative models, assured machine learning, AI for creativity and design, AI for education. In recent past, he has worked on activity recognition, object recognition, multi-object tracking. He has lead/involved on multiple government and commercial projects with clients including DARPA, IARPA, NSF and ARL.

Related